

Suzaku Detection of the Charge Exchange Emission and Observation for Soft X-ray Diffuse Emissions

Noriko Y. Yamasaki (ISAS/JAXA)

Outline

- Suzaku enable us real imaging-spectroscopy for Oxygen lines from all over the Universe. We will show some recent example about ..
- ★ Detection of the Solar-wind Charge Exchange (SWCX) emission
 - ★ Emission from "CUSP" region above the polar
 - Emission from the equatorial plane
- ★ Local Bubble with Shadowing technique
- M-band problem in soft X-ray background.
- Halo around the Galaxy
 - Plan for absorption / emission combined study
 - Abundance pattern and origin of the Halo

SWCX emission found in NEP

Eenrgy Spectrum during the flare

Light Curves

Light Curves

SWCX from exosphere on the equatorial plane

Observation: Galactic Ridge (no point source) at (I,b)=(-28.46,-2.04) or (Ra,Dec)=(281.0,-4.07) 2005/Oct/28-30

Strong OVII line 11+/- 2 ph/cm²/s/str 560 +/- 3 eV width < 6 eV

Light curve of emission line and lon flux by ACE

Time variation of the emission & Ion flux correlate well, with a delay < 5 hour ⇒ SWCX at the exosphere

Cross-Correlation between O7+ vs OVII emission

SWCX with a variation of a few hours

Solar WInd

Interplanetary

year

ACE O7+ Ion vs Suzaku OVII emission line intensity

07+ vs 0 emission line

Reproduction of the SWCX intensity

* Assume SWCX where the magntic field is open

$$O^{7+} + H \rightarrow O^{6+} + H^{+} + h\nu$$
 $f_{OVII} = \frac{1}{4\pi} \int_{l_{min}}^{l_{max}} \sigma f_{O7+} n_{H}(l) dl$

- ★ O7+ ion flux: estimated by ACE or DMSP
- ★ Cross section ~ 6x10⁻¹⁵ cm² (Wegmann+ 1998)
- ★ Magnetic Field: Stable model with GEOPACK 1995
- neutral H density
 - $+ nH(r) = 25 (10R_E/r)^3 R<11R_E (Cravens+ 2001)$
 - $+ nH(r) = 70 exp(-r/8.2R_E) R> 11R_E (Ostgarrd+ 2003)$
- ★ NEP: Data is factor of 3 higher
- ★ Galactic Plane: factor of 50 higher
 - we have started to collaborate with geophysics people.

Shadowing Observation of LB

Smith et al. 2007, PASJ, 59, S141 and also please check his poster

On-clound observation of MBM12 (60-270 pc?), a significant OVII line was detected.

OVII line intensity depends on the models, 2.2-3.6 ph/cm²/sec/str

with a thermal model of kT=0.1-0.12 keV (T = 10^6.2 ~ emissivity peak)

Soft X-ray diffuse background and M-band problem

- R4 band image of RASS is very uniform expect local structures
- ★ At high latitude, 60% of the background comes from the CXB (McCammon et al. 2002)
- On the Galactic plane, CXB should be absorbed.
- Some component compensates the absence of the CXB "M-band problem"
- ★ We tried a spectroscopic study at (I,b)=(235,0)

Energy Spectrum at (235,0)

Alpsorbed CXB

 Γ =1.4 (fixed)

Norm=7.5 ph/cm2/s/sr/keV @1keV

LB comp with OVII unabsorbed APEC kT=0.18 keV EM=0.019cm⁻⁶pc

Themal Emission with Fe-L complex unabsorbed APEC

kT=0.77 keV

EM=0.017 cm⁻⁶pc

Contribution of each component between 0.5 and 1 keV

	kT~0.1 keV LHB?	High kT comp	CXB	TOTAL
Anti-center (235.0,0.0)	0.34 (36%)	0.57 (61%)	0.02 (3%)	0.92 (100%)
High latitude (Lockman hole)	0.46 (40%)	-	0.70 (60%)	1.16 (100%)

[10⁻⁸ erg/s/cm²/sr]

- ★ If high T component is truly diffuse, the p/K > 10⁴ cm⁻³K
- ★ What's are on the Galactic plane with kT ~ 0.8 keV?
 - ★ Stars! Especially typical dM star has coronal emission with Lx~10²⁹ and kT~ 0.8 keV.

Estimate of stellar contribution

- Calculate expected logN-logS of M stars
- Spatial distribution of
 - * Stars: Bahcall & Snoneira

 1984

 (Z

$$N(R, Z) = n_0 \exp\left(-\frac{Z}{325 \text{ pc}} - \frac{R}{3.5 \text{ kpc}}\right)$$

- ★ Hydrogen: Cox 2005
- M stars (Kunz & Snowden 2001)
 - Density
 - Luminosity distribution
 - Energy spectra kT = 0.8 keV Z=1solar

2001)							
	0-0.15 Gyr	0.15-1 Gyr	1-10 Gyr				
midplane density	4.28x10 ⁻³	8.96x10 ⁻³	3.29x10 ⁻²				
<loglx></loglx>	29.19	27.89	26.86				
sigma of <log lx=""> 0.32</log>		0.72	0.77				

16

logN-logS relation

- ★ Contributes source distance < 1 kpc</p>
- ★ Total flux with S<10⁻¹⁴ ergs sources is 7.5x10⁻⁹ erg/cm²/s/str
 - Consistent with the data within 30% accuracy.
 - ★ Still there could be some contribution from truly diffuse plasma, but stars is not negligible

Synthesized spectra

Well represent Fe-L complex

b dependence of stars and CX

Galactic latitude (degree)

Absorption/Emission study

Source	OVII EW (eV)	Novii (10 ¹⁶ cm ⁻²)	z or D	absorption	Suzaku
LMC X-3	0.53±0.16	1.3 - 3.1	50 kpc	Wang et al. (2006)	2006 Apr
4U1820-303	1.2 ^{+0.5} -0.3	1.6 - 5.4	7.6 kpc	Futamoto et al. (2004). Yao &	2006 Sep
PKS 2155-304	0.43±0.09	≥ 0.45*	0.116	Nicastro et al. (2002) Rasmussen et al.	AO-3 (Hagihara)
Mkn 421	0.41±0.04	≥ 0.48*	0.030	Rasmussen et al. (2003, 2006)	AO-3 (Yao)
3C273	0.70±0.12	≥ 0.76*	0.158	Rasmussen et al. (2003)	

Already presented by Dr.Wang talk 2 observation will be done within this year

Halo around a starburst galaxy

NGC 4631: edge-on starburst at 7.5 Mpc

DSS+0.5-2 keV contour

0.6-0.7 keV image

Spectra of Halo and Disk

Abundance pattern

Abundance of the halo is almost consistent with SNe II model averaged by IMF (Nomoto + 2006). ⇒Halo gas is of SNe II products origin

Summary

- Suzaku can resolve OVII and OVII line clearly, and found that the Oxygen sky is variable and complex.
 - SWCX around the Earth (Comets, Mars etc.and in the heliosphere)
 - ★ OVII from Local Bubble
 - Significant contribution from stars in the Galactic plane
 - Hot ISM in and aroud the Galaxy
- ★ All can become "background" for all kind of observations.
 ⇒Many people has started to know the plentifulness of our neighborhood.
- * Reproduction method of SWCX is underway.